National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Medical Data Rendering in Real-Time
Lengyel, Kristián ; Havel, Jiří (referee) ; Jošth, Radovan (advisor)
This thesis deals with design and implementation of an application for medical data imaging in real-time. The first part of project is focused on methods for obtaining data in medical practice and visualization of large volume data on computer using familiar rendering approaches. Similar applications are used outside of medicine in other fields, such as chemistry to display molecular structures or microorganisms. Another part of project will focus on benefits of visualization of volumetric data using programmable hardware and new methods of parallelization of algorithms on graphics card using CUDA technology, and OpenCL. The resulting application will display the volume of medical data based on selected method accelerated by programmable shaders, and time-consuming operations will be paralleled on graphics card.
3D Volume Rendering Data Visualization
Varga, Marek ; Herout, Adam (referee) ; Kršek, Přemysl (advisor)
This thesis deals with using theoretical knowledge of computer graphic and vector mathematics for volume data construction and vizualization. This work provides more methods volume data vizualization and optimization. Algorithms and mathematical principles are necessary for data obtaining, correct interpretation, filtration and error correction and vizualization. This work describes possibilities of method voxel splatting. Model which implements this method is a part of this work and it contains some techniques for drawing process which include skipping empty sections and effective addressing of properties of volume data. System also provides interactive rendering and volume data manipulation.
3D Volume Rendering Data Visualization
Kazík, Jiří ; Španěl, Michal (referee) ; Kršek, Přemysl (advisor)
Theoretical part of this project is focused on rendering of volumetric data. It compares and appraise individual methods and thus readers get a good basic knowledge of commonnest causes of problems. Texture Mapped Volume Rendering is described in detail, because it is used in implementation of graphic system designed in this thesis. Whole system is created with maximal attention to platform independence. C++ language and Open Scene Graph toolkit are used for realization, so a brief description of OSG toolkit is also present in this work.
3D Volume Rendering Data Visualization
Kazík, Jiří ; Švub, Miroslav (referee) ; Kršek, Přemysl (advisor)
Theoretical part of this project is focused on rendering of volumetric data. It compares and appraise individual methods and thus readers get a good basic knowledge of commonnest causes of problems. Texture Mapped Volume Rendering and Volume Ray-casting methods are described in detail and the latter method is used in implementation of graphic system designed in this thesis. Secondary goals of this work are usage of less powerful hardware for volume-rendering, methods of optimization and dynamic change of output quality.
3D Volume Rendering Data Visualization
Varga, Marek ; Herout, Adam (referee) ; Kršek, Přemysl (advisor)
This thesis deals with using theoretical knowledge of computer graphic and vector mathematics for volume data construction and vizualization. This work provides more methods volume data vizualization and optimization. Algorithms and mathematical principles are necessary for data obtaining, correct interpretation, filtration and error correction and vizualization. This work describes possibilities of method voxel splatting. Model which implements this method is a part of this work and it contains some techniques for drawing process which include skipping empty sections and effective addressing of properties of volume data. System also provides interactive rendering and volume data manipulation.
3D Volume Rendering Data Visualization
Kazík, Jiří ; Španěl, Michal (referee) ; Kršek, Přemysl (advisor)
Theoretical part of this project is focused on rendering of volumetric data. It compares and appraise individual methods and thus readers get a good basic knowledge of commonnest causes of problems. Texture Mapped Volume Rendering is described in detail, because it is used in implementation of graphic system designed in this thesis. Whole system is created with maximal attention to platform independence. C++ language and Open Scene Graph toolkit are used for realization, so a brief description of OSG toolkit is also present in this work.
Medical Data Rendering in Real-Time
Lengyel, Kristián ; Havel, Jiří (referee) ; Jošth, Radovan (advisor)
This thesis deals with design and implementation of an application for medical data imaging in real-time. The first part of project is focused on methods for obtaining data in medical practice and visualization of large volume data on computer using familiar rendering approaches. Similar applications are used outside of medicine in other fields, such as chemistry to display molecular structures or microorganisms. Another part of project will focus on benefits of visualization of volumetric data using programmable hardware and new methods of parallelization of algorithms on graphics card using CUDA technology, and OpenCL. The resulting application will display the volume of medical data based on selected method accelerated by programmable shaders, and time-consuming operations will be paralleled on graphics card.
3D Volume Rendering Data Visualization
Kazík, Jiří ; Švub, Miroslav (referee) ; Kršek, Přemysl (advisor)
Theoretical part of this project is focused on rendering of volumetric data. It compares and appraise individual methods and thus readers get a good basic knowledge of commonnest causes of problems. Texture Mapped Volume Rendering and Volume Ray-casting methods are described in detail and the latter method is used in implementation of graphic system designed in this thesis. Secondary goals of this work are usage of less powerful hardware for volume-rendering, methods of optimization and dynamic change of output quality.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.